- Speed=distance (x)time (t)
- Average speed=Total distanceTotal time
- Instantaneous speed=lim
- Velocity\ v=\frac{displacement}{time}=\frac{\underset{\Delta r}{\rightarrow}}{\Delta t}
- Instantaneous\ velocity\ \vec{v}= \lim_{\Delta t\rightarrow 0}\frac{\Delta r}{\Delta t}=\frac{\underset{\Delta r}{\rightarrow}}{dt}
- Average\ acceleration\ \vec{a}= \frac{\Delta v}{\Delta t}
- Average\ acceleration\ \vec{a}= \lim_{\Delta t\rightarrow 0}\frac{\Delta v}{\Delta t}=\frac{\underset{\Delta v}{\rightarrow}}{dt}
- Equation for Uniformally accelerated motion
a. v=v_{0}+at
b. S=\left ( \frac{v_{0}+v}{2} \right )t
c. S=v_{0}t+\frac{1}{2}at^{2}
d. v^{2}=v_{0}^{2}+2aS - Distance covered in n^{th} Second S_{n}=v_{0}+\frac{a}{2}(2n-1)
About Vectors
A. Dot product -
\vec{A}.\vec{B}=AB\cos \theta
\vec{A}.\vec{A}=\left | \vec{A} \right |^{2}
\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1
\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{k}.\hat{i}=0
\cos \theta =\frac{\underset{A}{\rightarrow}.\underset{B}{\rightarrow}}{AB}
\vec{A}\perp \vec{B}\ then\ \vec{A}.\vec{B}=0
\vec{A} \parallel \vec{B}\ then\ \vec{A}.\vec{B}=AB
B. Corss product -
\vec{A}\times \vec{B}=AB\sin \theta \hat{n}
\vec{A}\times \vec{A}=0
\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0
\hat{i}\times \hat{j}=\hat{k}, \hat{j}\times \hat{k}=\hat{i}, \hat{k}\times \hat{i}=\hat{j}
\vec{A}\times \vec{B}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ Ax & Ay & Az\\ Bx & By & Bz \end{vmatrix}
\vec{A}\perp \vec{B}\ then\ \left | \vec{A}\times \vec{B} \right |=AB
\vec{A} \parallel \vec{B}\ then\ \left | \vec{A}\times \vec{B} \right |=0
If \theta be the angle between \vec{A} and \vec{B} and \left | \vec{A} \right | = \left | \vec{B} \right | then
- If \theta = 0 then \left | \vec{A}+\vec{B} \right |=2A
- If \theta = 180 then \left | \vec{A}+\vec{B} \right |=0
- If \theta = 90 then \left | \vec{A}+\vec{B} \right |=\sqrt{2}A
- If \theta = 60 then \left | \vec{A}+\vec{B} \right |=\sqrt{3}A
- If \theta = 120 then \left | \vec{A}+\vec{B} \right |=A
For Projectile
- Time to reach the highest point t_{max}=\frac{v_{0}\sin \theta }{g}
- Maximum height H=\frac{v_{0}^{2}\sin ^{2}\theta }{2g}
- Range R=\frac{v_{0}^{2}\sin 2\theta }{g}
- Maximum Range R=\frac{v_{0}^{2}}{g}
- Flight time T=\frac{2v_{0}\sin \theta }{g}
- Equation of trajectory y=x\tan \theta -\frac{gx^{2}}{2v_{0}^{2}\cos ^{2}\theta }
- R=4H\cot \theta