141.  Write the dimensional formula of r.m.s (root mean square) speed.

A. \(M^{1}L^{2}T^{-2}\)

B. \(M^{0}L^{2}T^{-2}\)

C. \(M^{0}L^{1}T^{-1}\)

D. \(M^{1}L^{0}T^{-1}\)

Answer : Option C

Explanation :

\(U_{rms}=\sqrt{u^{2}} = \) root mean square speed

View Answer

142.  One physical quantity represented by an equation as \(\frac{\pi }{2}(p-q)c\) where p, q and c are length then quantity is

A. Length

B. Velocity

C. Area

D. Volume

Answer : Option C

Explanation :

If \(p = q = c = L\)
then \((p - q)c = L^{2} =\) Area

View Answer

143.  The dimensional formula of magnetic flux is

A. \(M^{1}L^{2}T^{-2}A^{-1}\)

B. \(M^{1}L^{2}T^{1}A^{2}\)

C. \(M^{1}L^{2}T^{-2}A^{2}\)

D. \(M^{-1}L^{-2}T^{1}A^{2}\)

Answer : Option A

View Answer

144.  Which physical quantity has unit of pascal - second ?

A. Force

B. Energy

C. Coefficient of viscocity

D. Velocity

Answer : Option C

Explanation :

\(F=nA\frac{\mathrm{d} v}{\mathrm{d} x}\)

\(\therefore n=\frac{F}{A\frac{\mathrm{d} v}{\mathrm{d} x}}=\) pascal second

View Answer

145.  Dimensional formula of CV ? where C - capacitance and V - potential different

A. \(M^{1}L^{-2}T^{4}A^{2}\)

B. \(M^{1}L^{2}T^{-3}A^{1}\)

C. \(M^{0}L^{0}T^{1}A^{-1}\)

D. \(M^{0}L^{0}T^{1}A^{1}\)

Answer : Option D

View Answer

146.  The equation of a wave is given by \(Y=A\sin \omega \left [ \frac{x}{v}-k \right ]\) where \(\omega \) is the angular velocity and \(v\) is the linear velocity. Write the dimensional formula of \(K\)

A. \(M^{0}L^{0}T^{1}\)

B. \(M^{1}L^{0}T^{-1}\)

C. \(M^{0}L^{1}T^{1}\)

D. \(M^{1}L^{-1}T^{1}\)

Answer : Option A

Explanation :

\(y=A\sin \omega \left [ \frac{x}{v}-k \right ]\)

\(\therefore \frac{x}{v}=k\)

\(k=\frac{x}{v}=M^{^{0}}L^{0}T^{1}\)

View Answer

147.  If p and q are different physical quantities then which one of following is only possible dimensionally ?

A. p + q

B. p / q

C. p – q

D. p = q

Answer : Option B

View Answer

148.  From \(\left ( P+\frac{a}{v^{2}} \right )\left ( V-b \right )=constant \) equation is dimensionally correct find the dimensional formula for b ? where p = pressure v = volume

A. \(M^{0}L^{3}T^{0}\)

B. \(M^{1}L^{3}T^{0}\)

C. \(M^{0}L^{1}T^{3}\)

D. \(M^{1}L^{1}T^{1}\)

Answer : Option A

Explanation :

\(\left ( P+\frac{a}{v^{2}} \right )\left ( V-b \right )=constant \)

\(PV-Pb+\frac{a}{v}-\frac{ab}{v^{2}}=constant \)

\(\therefore PV-Pb\)

\(\therefore V=b=M^{0}L^{3}T^{0}\)

View Answer

149.  Pressure \(P=A\cos Bx+C\sin Dt\) where \(x\) in meter and \(t\) in time then find dimensional formula of \(\frac{D}{B}\)

A. \(M^{1}L^{1}T^{-1}\)

B. \(M^{0}L^{1}T^{-1}\)

C. \(M^{1}L^{1}T^{0}\)

D. \(M^{-1}L^{0}T^{1}\)

Answer : Option B

Explanation :

\(\cos Bx = dimentionless\)

\(Bx = M^{0}L^{0}T^{0}\)

\(B = \frac{M^{0}L^{0}T^{0}}{x}=M^{0}L^{-1}T^{0}\)

Same as \(D = M^{0}L^{0}T^{-1}\)

\(\therefore \frac{D}{B} = M^{0}L^{1}T^{-1}\)

View Answer

150.  Find the dimensional formula for energy per unit surface area per unit time

A. \(M^{1}L^{0}T^{-2}\)

B. \(M^{0}L^{1}T^{-1}\)

C. \(M^{1}L^{0}T^{-3}\)

D. \(M^{1}L^{-1}T^{1}\)

Answer : Option C

View Answer