91.  One planet is observed from two diametrically opposite point A and B on the earth the angle subtended at the planet by the two directions of observations is \(1.8^{\circ}\). Given the diameter of the earth to be about \(1.276\times 10^{7}m\). What will be distance of the planet from the earth ?

A. \(40.06\times 10^{8}m\)

B. \(4.06\times 10^{8}m\)

C. \(400.6\times 10^{13}m\)

D. \(11\times 10^{8}m\)

Answer : Option B

Explanation :

\(\theta =1.8^{\circ}=0.01\pi\ rad\)

\(b=1.27\times 10^{7}m\)

\(D=\frac{b}{\theta }=4.06\times 10^{8}m\)

View Answer

92.  Find the distance at which 4 AU would subtend an angle of exactly 1" of arc. \(\left [ 1AU=1.496\times 10^{11}m,1''=4.85\times 10^{16}rad \right ]\)

A. \(1.123\times 10^{5}m\)

B. \(11.23\times 10^{5}m\)

C. \(1.123\times 10^{17}m\)

D. \(11.23\times 10^{17}m\)

Answer : Option C

View Answer

93.  The percentage error in the distance \(100\pm 5\ cm\) is

A. 5%

B. 6%

C. 8%

D. 20%

Answer : Option A

View Answer

94.  In an experiment to determine the density of a cube the percentage error in the measurement of mass is 0.25 % and the percentage error in the measurement of length is 0.50 % what will be the percentage error in the determination of its density ?

A. 2.75 %

B. 1.75 %

C. 0.75 %

D. 1.25 %

Answer : Option B

Explanation :

\(density(\sigma )=\frac{mass(m)}{volume(l^{3})}\)

Percentage error in density

= \(\left [ \frac{\Delta M}{M}+3\left ( \frac{\Delta L}{L} \right ) \right ]\times 100\)

= 1.75 %

View Answer

95.  If \(A=b^{4}\) the fractional error in A is

A. \(\frac{(\Delta b)^{4}}{b}\)

B. \(\frac{\Delta b}{b}\)

C. \(4\left ( \frac{\Delta b}{b} \right )\)

D. \((\Delta b)^{4}\)

Answer : Option C

View Answer

96.  If \(P=\frac{A^{2}B}{C^{3}}\) where percentage error in A , B and C are respectively \(\pm 2\)%, \(\pm 3\)% and \(\pm 5\)% then total percentage error in measurement of P

A. 18%

B. 14%

C. 21%

D. 12%

Answer : Option C

Explanation :

\(P=\frac{A^{2}B}{C^{3}}\)

\(\frac{\Delta P}{P}\%=\left [ 2\frac{\Delta A}{A}+\frac{\Delta B}{B}+3\frac{\Delta C}{C} \right ]\)

\(=21\%\)

View Answer

97.  In the experiment of simple pendulum error in length of pendulum (\(l\)) is 5 % and that of \(g\) is 3 % then find percentage error in measurement of periodic time for pendulum

A. 4.2%

B. 1.2%

C. 2%

D. 4%

Answer : Option D

Explanation :

\(T=2\pi \sqrt{\frac{l}{g}}\)

\(\frac{\Delta T}{T}\times 100=\left [ \frac{1}{2}\times\frac{\Delta l}{l}+\frac{1}{2}\times\frac{\Delta g}{g}  \right ]\times 100\)

\(=4\%\)

View Answer

98.  Acceleration due to gravity is given by \(g=\frac{GM}{R^{2}}\) what is the equation of the fractional error \(\frac{\Delta g}{g}\) in measurement of gravity g ? [G & M constant]

A. \(-\frac{\Delta R}{R}\)

B. \(2\frac{\Delta R}{R}\)

C. \(-2\frac{\Delta R}{R}\)

D. \(\frac{1}{2}\frac{\Delta R}{R}\)

Answer : Option B

View Answer

99.  The period of oscillation of a simple pendulum is given by \(T=2\pi \sqrt{\frac{l}{g}}\) what is the equation of the relative error \(\frac{\Delta T}{T}\) in measurement of period T ?

A. \(\frac{1}{2}\frac{\Delta l}{l}\)

B. \(2\frac{\Delta l}{l}\)

C. \(\frac{1}{4}\frac{\Delta l}{l}\)

D. \(4\frac{\Delta l}{l}\)

Answer : Option A

View Answer

100.  The length of a rod is \((10.15\pm 0.06)cm\) what is the length of two such rods ?

A. \((20.30\pm 0.06)cm\)

B. \((20.30\pm 1.6)cm\)

C. \((10.30\pm 0.12)cm\)

D. \((20.30\pm 0.12)cm\)

Answer : Option D

Explanation :

length of two rods \(=2l\)

\(=2(10.15\pm 0.06)\ cm\)

\(=(20.30\pm 0.12)\ cm\)

View Answer